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SIMULATION OF RHEOMETRIC FLOW 
OF A NEWTONIAN FLUID BY THE METHOD 
OF FINITE ELEMENTS 

I. A.  M a k a r o v  UDC 519.6:532.62 

Flow between two plates is investigated numerically in the phase of  reaching a steady-state value for 
a Newtonian fuid.  Certain features of  the application of the method of finite elements are discussed. 
The time of  reaching the steady state by the f low is determined, which is constant for a wide range of 
parameters and fluids. It is noted that the results obtained can serve as the "point of  departure" for 
comparing the considered f low with similar flows of  viscoelastic and viscoplastic fluids and that the 
difference between the times of  reaching the steady state by the flows can be used to evaluate the 

degree o f  non-Newtonian behavior of  one fluid or another or of  the model. 

Flow between two parallel plates plays an important role in experimental rheology [ 1-2]. When a flow 
reaches the steady state, it allows one to record the so-called rheometric curves, i.e., the dependences of vis- 
cosity on the rate of shear. 

However, for non-Newtonian fluid flows in the steady state it is impossible to determine such impor- 
tant properties as the presence of "memory" and the difference of normal stresses [2] that manifest themselves 
especially substantially in fast nonstationary flows. Moreover, any realizable steady-state flow must have a 
phase of reaching this state, and the behavior of the fluid can depend on the character of the phase and on the 
way in which the non-Newtonian properties manifest themselves in it. Therefore, investigation of this phase, in 
particular, in comparison with a similar phase of a Newtonian fluid, which is investigated in the present work, 

can be of great interest. 
Formula t ion  of the Problem. We introduce the Cartesian coordinate system, directing the x and y 

axes parallel and perpendicularly to the plates, respectively. Assuming that the y component of the velocity is 
equal to zero and that all the characteristics of the flow do not change along the x axis, the equations of the 
hydrodynamics of  an incompressible fluid are reduced to the equation 

~u 1 ~2u 
at Re 3y 2 " 

where Re = pUH/~t, t = t*U/H, 0 < y = y* /H < 1, and u = u*/U. 
Initial conditions: u(y, O) = O: bounda~ conditions: the process of smooth acceleration of  the upper 

plate from zero velocity to the asymptotic velocity U will be described by the function 

(x't* (1) 
Upl --  1 + ct*t* 

Evidently, the parameter or* characterizes the rate of build-up of the acceleration. 
For the dimensionless velocity u(1, t) = at / ( l  + ¢~t), where a = c~*H/U. The lower plate is at rest: u(O, 

t ) = O .  
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We will make the substitution t---> o.t and write the problem in the form 

au (y, t) a2u (v, t) 
- -  - M - -  (2.1) 

u(y, 0) = 0 ,  (2.2) 

u (0, t) = 0 ,  (2.3) 

t (2.4) 
u ( 1 , t ) - l + t .  

Thus, the entire class of the flows considered can be described by relations (2.1)-(2.4) with variation of  only 
one parameter M = 1/aRe.  

Method of  Solution. This problem can be solved, in principle, analytically by means of the operational 
method [3]. However, the practical use and analysis of this kind of  solution would be associated with the ne- 
cessity of computer calculations of series and integrals. In the present work, the problem is solved directly by 
numerical simulation by means of the method of finite elements. In addition to the consideration of the main 
problem, this made it possible to use this simple example to investigate certain features of  this method. 

Let us apply the method of finite elements in two modifications [4]: with the use of  linear finite ele- 

ments Yl - Y2 with the functions 

Y -Y2 Yl - Y  
W l - , W ~ - - -  

Yl-Y2 - Yl-Y2 

and with the use of  quadratic Lagrangian finite elements Yl -Y2 -Y3 with the functions 

(.v - Y2) (v - Y3) (}21 - -  Y) (Y - Y3) 
W I -  

(Yl -Y2) (Yl -Y3) ; W, = (Yl -Y2) (-v2 -Y3) 

(v| =y)  (Y2 -Y)  

( Y l  - Y3) (Y2 - Y3) 

The application of the method of finite elements and the approximation of the time derivative in (2.1) 
according to Crank-Nicholson gives a system of equations, which precisely is solved numerically for the quan- 
tities u~ +l, i = 1 . . . . .  N - 2 ,  by the method of successive upper relaxation 

ik + - - 2  "- = ik  - -  ( 3 )  DikJblk nik Uk, 

1 I 
bWi 

Aik = J WiW~dv (Gram's matrix, which is symmetric and positive definite [5]) and Bik = j °~v-~r,~dY. Here ay 
0 0 

The maximum rate of  convergence of the iterations in virtually all the computations described below 
was attained at the relaxation parameter o3 = 1.6. 

Testing. To investigate the convergence of the solution of the finite-element formulation of the prob- 
lem, comparison was made of  the numerical solution and particular solution of Eq. (2.1): 

u (v, t) = exp ( -  Mt) sin y .  

Naturally, instead of conditions (2.2)-(2.4) we prescribed 

u (v, 0) = sin y ,  (2.2)' 
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TABLE 1. Norms for Test Solution with Linear Finite Elements 

At N 
21 61 101 141 201 

0.0005 

0.001 

0.01 

0.03 

0.05 

3.84.10 -5 

3.98.10 -5 

7.92.10 -5 

0.00052 

0.0015 

4.42.10--6 

4.65-10-6 

3.82.10 -5 

0.00046 

0.0014 

9.71.10-6 

1.o9.1o -5 

2.92.10-5 

0.00044 

0.0014 

1.85-10 -5 

3.08.10 -5 

5.92.10 -5 

0.00043 

0.0014 

8.53-10-5 

1.11-10--4 

0.00012 

0.00033 

0.0012 

TABLE 2. Norms for Test Solution with Quadratic Finite Elements 

At 

0.0005 

0.001 

0.01 

0.03 
0.05 

N 
11 31 51 71 101 

1.8o.io-6 
1.78.10 -6 

3.96-10 -5 

0.00047 
0.0014 

4.29-10~) 

7.24.1045 

3.65-10-5 

0.00046 
0.0014 

1.10.10 -5 

1.55.10 -5 

3.67.10 -5 

0.00042 

0.0013 

1.85-10-5 

5.82.10 -5 

7.47-1 0-5 

0.00038 

0.0013 

0.00013 

0.00015 

0.00016 

0.00028 
0.0012 

u (0, t) = 0 ,  (2.3)" 

u (1, t) = exp ( -  Mt) sin 1 . (2.4)' 

Tables 1 and 2 present the magnitudes o f  the norm of  the difference between the numerical  and exact 
solutions when applying linear and quadratic finite elements in calculating up to t = 1 at M = 10 with uniform 

splitting (here, by the norm we mean max lust*- U~/-num]). 
k.n 

One can note that the use of  quadratic finite elements is much  more efficient: in the similar cells of  
the tables the values of  the norms are commensurable,  but in this case the number of  nodes in the quadratic 
case is approximately half as small (more precisely, the quantities o f  nodes for the linear and quadratic finite 

elements are in the ratio 2 N -  l /N) .  Further, it is possible to state a g o o d  accuracy with the average frequency 
of  division (11-51 points in Table 2). A finer grid (up to 101 points in Table 2) does not lead to higher accu- 

racy. 
We propose one o f  the possible reasons for this. As can easily be seen from the form o f  the finite-ele- 

ment functions and integrals, the norms of  the matrices are IIAII- ~x] and IIBll- l/~X. Further, it is not difficult 
to see that B is symmetric and "nonnegative" definite, i.e., 

v a ¢ O  E Bikaiak>O" 
i,k 

Then the overall matrix of the left-hand side o f  (3) is evidently symmetric and positive definite (pre- 

cisely this is in essence the "theoretical" basis for applying the SOR-method  for solving system (3) [6]). More- 
over, the matrix B is degenerate. Indeed, Eq. (2.1) has the trivial solution u(y, t) = const; then (3) must  admit 

the solution u~Z. +l = const; here 

E Bik//k+l ---- const E Bi~" = O, 
k k 
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TABLE 3. Parameters Used in Investigation of Flow for Specific Fluids 

Fluid 

Water 

Glycerin 

High-pressure 
polyethylene 

~t, Pa.sec 

10 -3 

1.5 

~105 

Re 

100 

0.067 

_-10-6 

~t 

80 

40 

, sec -1 M 

8.10 -3 

12 

~8.10 5 

i I , I ¢ 

o 0.04 0.08 M 

Fig. 1. Dependence of  the dimensionless time of  attaining the stationary 

state by the flow on the parameter M. 

which is the condition for the linear dependence of the colmrms B. Therefore, the matrix B has at least one 
zero eigenvalue. In view of the estimations of the norms of the matrices, all the nonzero eigenvalues increase 
with N. It is not difficult to come to a conclusion about the decrease in the number of  conditionality (ratio of 
the minimum and maximum eigenvalues) for the matrix of  the left-hand side of (3), which probably influences 

the quality of solution [4]. 
This assumption was confirmed by the fact that at large N the number of iterations needed to obtain a 

solution increased substantially (up to 150-200) and, consequently, so did the time of calculation. Thus, on the 
basis of this test solution it was assumed justifiable to select N within the range 11-51 in the main version of 

the problem. 
Parameters .  Determination of the Range of the Values of M. For an actual rheometric experiment it 

is advisable to consider it reasonable to take the following values: H = 0.5 cm and U = 2 cm/sec; further, let 
us agree to consider the time of attaining the steady state by the upper plate the period during which its accel- 
eration decreases to the fraction e = 1.5.10 -3 from the initial acceleration (e was selected from consideration of 
the optimum time of calculation). From E£ I. (2.4) we obtain that this time is 7~s ~ = 24.8; for the dimensional 
time, if c~* = 5 sec -l,  7~ ~ 5 sec, which is acceptable f rom the practical point of  view. The corresponding 

parameters for three fluids are presented in Table 3. 
Evidently, to describe flows of a wide range of fluids (from virtually Newtonian (water) to viscoelastic 

(polymer melts)) it is necessary to assign the range M = 10-3-10 -5. 
Results and Discussion. The time of attainment of  the stationary regime in comparison with the time 

T~d~v can be considered as one of the most important characteristics of  a flow. It was determined from the 

3u~- I 
condition that at this time the norm of the time derivative max --~---, did not exceed ~. The results of  the 

k O i l  

determination of this time are presented in Fig. 1. 
As was expected, at small values of  M (smaller than 0.04) in a number of  cases in the zone of a sharp 

change of velocity near the upper plate there were oscillations of  the numerical solution on the first several 
time layers. However, it was not difficult to overcome them (by increasing somewhat the number of points and 
(especially) by bunching the splitting near the upper boundary and decreasing the time step (thereafter the step 
gradually increased with approach to the stationary regime). A conclusion can be drawn from the graph that 
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only at small values of  M does the time of attainment of the stationary state by the flow differ noticeably from 
the time of acceleration of the upper plate 71dalev. At larger M (up to 105) this time is close to the latter one. 

Similar dependences calculated or measured experimentally in the case of non-Newtonian fluids in 
comparison with the given dependence could probably give information about the extent of the manifestation 
of non-Newtonian properties by the fluid for different reasons (viscoplasticity, viscoelasticity). 

N O T A T I O N  

t*, y*, u*, t, y, and u, dimensional and dimensionless values of the time, vertical coordinate, and x-com- 
ponent of the fluid velocity; p and ~t, density and dynamic viscosity of the fluid; Re, Reynolds number; Upl, 
velocity of the upper plate; U, velocity of the upper plate in constant motion; H, width of the gap between the 
plates; ct* and ~, dimensional and dimensionless values of the parameter that characterizes the rate of increase 
of the acceleration of  the upper plate; M, dimensionless parameter; FEs, finite elements; i and k, numbers of 
finite-element nodes; W1, W2, W~, and Wi, finite-element functions; Yl, Y2, and Y3, nodes contained in the in- 
stantaneous finite element; uT, nodal value of the velocity on the n-th time layer; N, number of nodes of finite- 
element splitting; Aik and Bik, elements of the matrices A and B composed of inte~al finite-element products; 
a, vector; At, numerical time step; z~, smallness of the finite-element splitting; ~ and ~ ,  dimensional and 
dimensionless values of the time of development of  the motion of the upper plate; e, small parameter that 
determines the time of  attainment of the stationary regime by the motion of the upper plate and fluid. 
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